

PENTAKSIRAN DIAGNOSTIK AKADEMIK SEKOLAH BERASRAMA PENUH 2020

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA PHYSICS

4531

Kertas 1,2,3 Oktober 2020

PERATURAN PEMARKAHAN

PHYSICS

UNTUK KEGUNAAN PEMERIKSA SAHAJA

AMARAN

Peraturan pemarkahan ini SULIT dan Hak Cipta Sekolah Berasrama Penuh. Kegunaannya khusus untuk pemeriksa yang berkenaan sahaja. Sebarang maklumat dalam peraturan pemarkahan ini tidak boleh dimaklumkan kepada sesiapa. Peraturan pemarkahan ini tidak boleh dikeluarkan dalam apa-apa jua bentuk penulisan dan percetakan.

NAMA PEMERIKSA

NAMA SEKOLAH

TANDA TANGAN PENERIMAAN PERATURAN PERMARKAHAN

TARIKH

COP SEKOLAH

Peraturan Pemarkahan ini mengandungi 15 halaman bercetak.

PENTAKSIRAN DIAGNOSTIK AKADEMIK (FIZIK KERTAS 1) SBP 2020

Marking Scheme Paper 1 (4531/1)

KERTAS 1

1	В	11	C	21	В	31	C	41	. D
2	D	12	Α	22	С	32	Α	42	С
3	Α	13	В	23	В	33	D	43	A
4	С	14	С	24	D	34	С	44	C
5	D	15	В	25	С	35	В	45	C
6	A	16	В	26	В	36	С	46	А
7	В	17	D	27	В	37	D	47	Α
8	A	18	С	28	D	38	D	48	В
9	D	19	Α	29	С	39	С	49	В
10	В	20	D	30	C	40	В	50	С

Analysis

Class/ Group	Min Score	Lowest Score	Highest Score	Top Incorrect response (The Question Number)
	=			
		y		

PENTAKSIRAN DIAGNOSTIK AKADEMIK (FIZIK KERTAS 2) SBP 2020

Marking Scheme Paper 2 (4531/2)

QUESTION 1

SULIT

Question	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.	Ammeter	l	1_		
b.	Current	1	1		
c.	Series	1	1		
d.	Not light up	1	1		
	Total		4		

QUESTION 2

Que	stion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.		Shortest distance between initial point to final point	1	1		
b.		Velocity increases uniformly // Conctant acceleration	1	1		
c.	i.	M1 $\frac{10-0}{18-22}$ M2 2.5 ms ⁻¹	2	2		
	ii.	Velocity	1	1		
		•	Total	5		

Quest	tion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.		The spreading out of waves when they move through a gap or obstacle	1	1		
b.		M1 half circle (at least 3) M2 same wavelength	2	2		
c.		Decreases	1	2		
	i.	Increases gap 1		1		
d	ii.	Less obvious // less curve // less diffracted	1 -	1		
			Total	. 6		

Question	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.	Converge the light	1	1		
b.	Image M1 light ray parallel to the principal axis passing through the F M2 light ray passing through the optical center in straight line M3 extrapolate the rays and draw an upright image at intersection point Label the direction of all the light rays		3		
c.	Alternative 1 v = 20 cm (v is determine from diagram) $M = \frac{20}{4} = 5$ Alternative 2 $\frac{1}{5} = \frac{1}{4} + \frac{1}{v}$ v = -20 cm $M = \frac{20}{4} = 5$	1 1 1 1	2		
d.	Size of image is smaller	1	1		
	*	Total	7		

Que	stion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.		Move randomly// move in straight line // collide with each other				
b.	i.	same mass				
	ii.	The volume of air in the syringe in Diagram 5.2 is bigger than the volume of air in the syringe in Diagram 5.1				
c.		Smaller pressure				-
d		For a fixed mass of air, the pressure is decreases when the volume increases // the pressure is inversely proportional the volume				
e		Boyle's law				
f		 M1 The air particles in the syringe collide less frequently with the walls of the container and with the balloon // less rate of collision occurs. M2 less force exerted by the air in the syringe on the balloon. 				
	_	on the bandon.	Total	8		

5

Que	stion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.		Time taken for the number of un-decay nuclei / mass/activity to be reduced to half of its original number of nuclei / mass / activity.	1	1		
	i.	No	1			
b.	ii.	Half-life radioactive substance X is bigger than radioactive substance Y		3		
	iii.	Less	1			
c.	Z-AXCOLAII	Decay rate X < decay rate Y	1	1		
d.		Half-life decrease, decay rate increase	1	1		100
e.		M1 Show smaller reading M1 Background radiation	1	2		
			Total	8		

Ques	stion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a	i	Buoyant force	1	1		
	Ii	Buoyant force Sea	1	1		
b		$W=\rho Vg$ $10000+700 = 1020 \times V \times 10$ $V = 1.045 \text{ m}^3$	1 1	2		
С	i	Shape of the boat: Steamline//Oval//Bullet Reason: To reduce water resistance	1	2		
	ii	Density of the boat material: Small Reason: Small mass//Lighter	1	2		
	iii	Add bouy//Drum//Float pods Reason: To stay afloat	1	2		
			Total	10.		

7

Que	stion	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.		The current that is induced by electromagnetic inductions when the circuit is complete// The current that can be produced without any electrical supply/source The current produced when the magnetic flux is cut across by a conductor// Changing of flux at conductor	1	1		
	i.	P = (6)(0.5) P = 3W	1	2		
b.	ii.	$Efficiency = \frac{3}{15} \times 100\%$ $= 20\%$	1	2		
	i.	M1 Cylindrical magnet M2 Produce a magnetic flux that rotate // The rotating magnet produce a changing magnetic field	2			
c.	ii.	M1 High number of turn of the coil M2 Cut change of magnetic flux	2	7		
	iii.	M1 Soft iron core M2 Easy to magnetize and demagnetize	2			
	iv.	S	Total	8		

Question	A	Answer	Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.	Velocity		1	1		
a.	Refractive index of lake water < Refractive index of sea water					
b.	The bending of paddle in lake water < bending of paddle in sea water					
	Velocity of light in lake water > Velocity of light in sea water			5		
	Refractive index incredecrease	Refractive index increase, velocity of light				
	Refraction of light					
	1. Light travel from	turtle (object) in water the air (low density).	1			
	Refraction of light occurs when light bend away from normal and enter into eyes.					
с.	3. Light travel in straight line					
	4. cause the image f apparent depth; a	orm at above object at pparent depth	1	4.		
	Apparent depth depth Water					
	Suggestion Type of cable: Fiber optic Cable length:	Reason Total internal reflection can occur - More of cable able to	2			
d	Long	be insert into the engine - Able to inspect deep part of engine	2	10		
	Diameter of cable: Small	Can enter narrow pipe or space in the engine	2			
	High power lamp at the end of cable	-Image is brighter -Image seen can be seen clearly	2			
	Flexible	Can be bend similar to the shape of engine space	2			
		1	- 1	1	1	- 1

a. on P = J = i. MI M2 M3	on A	Answer		Total Mark	Students' Common Mistakes	Note
i. MI M2 M3 WI ii. MI M2 Ap out C i Air M1 M2 M3 M4 M5 M5 M6 M7 M6 M7 M7 M7 M7 M7 M7 M7	An electronic circuit one or more inputs	with a single output and	1	1		
e ii. au Ap out Ap out Ap out Ai M M T d T d T d I V n L	M2 minimum 4 ai	J = 0, K = 0, L = 1 M1 minimum 2 are correct M2 minimum 4 are correct M3 All are correct When both inputs are 0/OFF/Low, output = 1/ON Apabila kedua-dua input 0/OFF/Rendah, maka output = 1/ON				
d ii Mi d ii Mi	ii. output = 1/ON Apabila kedua-dua iri					
d ii Mi	NOR // TAKATAU		1	1		
d ii Mi	i Air-conditioner ON		1			
e e L	If human is p	M1 If the temperature increases, X is ON. If human is presence in the room, Y is ON.				
e E	ii M2 Output ON ar across the res		ı	4		
e d d T d d I V m L		ch will switch on the cuit//Air conditioner ON	1	•		
	Suggestion Type of 1st detector: LDR Type of 2nd detector: Rain detector Waterproof material Low density high power motor OR gate and NOT gate	resistance low when light is detected by the LDR Resistance low when rain/water is detected by the detector Prevent water from penetrates the roof Lighter, so it can be pulled or installed faster. More force is produced to pull the roof faster. 1st input is high / 1 (rain is detected, and NOT gate reversed the output), or 2nd input is high (light is presence), output is on (roof is pulled by motor)	2 2 2 2 2	Max 10		
			Total	20		

Question		Answer		Mark Dist.	Total Mark	Students' Common Mistakes	Note
		Draw the aerofoil correc	ctly shape				
	i.			1	1		
a.	ii.	surface and higher pressure on the lower surface M4 difference pressure occur M5 Produce lifting force			Max 4		
	i.	Show the calculation consubstitute the value correct answer with under a = 15.03 m s ⁻²	rectly 00 00	1	2		
b.	ii.	Conversion of unit for v (km h ⁻¹ to m s ⁻¹) v = 79 .17 m s ⁻¹ Substitution of value correctly		1 I	3		
c.		Suggestion Body made of carbon fibre Aerofoil shape Smaller mass Narrow tyre without thread	Reason - Lighter - Strong Reduce air friction Lighter Decrease friction Body made of carbon fibre, aerofoil shape, Smaller mass, Narrow	2 2 2 2 2	10		
			tyre without thread	Total	20		

Question		Answer		Mark Dist.	Total Mark	Students' Common Mistakes	Note
a.	i	Sound wave with	frequency exceeding 20 kHz	1	1		
b.	ii	 An ultrasonic transmitter will send the pulse to the obstacle A receiver will detect the reflected pulse. The time taken between sending and receiving pulse is noted The distance can be calculated 			4		
	i	$v = f\lambda$ Substitution of v $v = (3000)(0.52)$ Correct answer v $v = 1560 \text{ m s}^{-1}$		1	2		
c.	ii	Conversion of prefixes to SI unit $5000 \text{ ms} = 5000 \times 10^{-3} \text{ s}$ = 5 s		1 1	3		
d.		Suggestion Type of wave: Ultrasonic wave Speed in metal: High Frequency: High Type of transducer: Contact transducer	Reason - high penetrating power - non-destructive method - non-hazardous to operate - no effect on equipment - can detect more flaw in industry and construction - shorter time - can detect small flaws - allows the detection of internal flaws Can locate void, porosity and cracks easily Ultrasonic wave, high speed in metal, high frequency and contact transducer	2 2 2 2	10		
				Total	20		

11

PENTAKSIRAN DIAGNOSTIK AKADEMIK (FIZIK KERTAS 3) SBP 2020

Marking Scheme Paper 3 (4531/3)

Qı	uestion	Answer				Mark	Total Mark	
	(a)(i)	Manipulated v	ariable: Dis	tance betwe	en screen an	nd double slit // D	1	
1	(ii)	1000		and the second s		eutive bright fringe	1	
	(iii)	(iii) Constant variable = Distance between two slit // wavelength						
		$x_1 = 4.6, 4.5, 4.5$	4.2, 4.0, 3.6	****			1	
	(b)(i)	$x_2 = 5.4, 5.8, 6$	6.0, 6.4, 6.4				1	
	(ii)	x = 0.8, 1.3, 1 All correct: 2 At least 3 cor	marks	k			2	
	(iii)	D/cm	x_1 / cm	x_2 / cm	x / cm			
	(111)	20.0	4.6	5.4	0.8			
		30.0	4.5	5.8	1.3			
		40.0	4.2	6.0	1.8			
		50.0	4.0	6.43	2.4 3			
		60.0	3.6	6.4	2.8		3	
		1 mark	– correct u	s for D , x_1 , x_2 nits for each x_2 of x_1 , x_2 an	(2) and x (2) D, x ₁ , x ₂ and x are const	d x istent 1 d.p		
	(c)	Draw the gra	aph of D ag	ainst x.				
				axis correct				
		B -States the unit at the axis correctly✓						
		C -Both axes with the even and uniform scale ✓						
		D -5 points correctly plotted: ✓✓						
		 at least 3 points correctly plotted ✓ a smooth best straight line ✓ 						
		F -minimu			x 4 squares of	of 2 cm x 2cm.✓		
			7 × -5					
			3-4 \(- 3 \)					
			2 🗸 - 2					
			1 ✓ -1	marks				
	(d)	x is directly p	proportional	to D		1. · · · · · · · · · · · · · · · · · · ·	1	
				Tota	1			16

13

Question		Answer		Total Mark	
2	(a)(i)	a is directly proportional to $\frac{1}{m}$	1	1	
		Extrapolate the graph	1		
	(ii)	$\frac{1}{m} = 1.75 \text{ kg}^{-1}$	1	3	
		m = 0.57 kg	1		
		The gradient of graph a against $\frac{1}{m}$ Draw a big triangle (4 x 4 blocks)(2 cm x 2 cm)	1		
	(iii)		1	3	
		$= 2 \text{ kg m s}^{-2}$	l (answer and correct unit)		
	(b)(i)	Show $k = F$ $F = 2 \text{ kg m s}^{-2}$	l (answer and correct unit)	2	
	(ii)	Increases $k \alpha F$	1	2	
	(c)	The position of the eye is perpendicular to the reading scale of metre rule.	1	1	
III-		Total		12	

No		Answer	Ma	rks
3	(0)	Write a suitable inference	1	
	(a)	The object distance affects the height// size of the image		1
	(b)	Write a suitable hypothesis	1	
	(0)	The greater the object distance, the smaller the height of the image		1
	(a) (i)	State the aim of the experiment		
	(c) (i)	To investigate the relationship between the object distance and the height of the	1	1
		image		
		State the manipulated variable and responding variable		
		Manipulated variable: object distance, u	1	
	(ii)	Responding variable: height of the image, H		2
		State the fixed variable	1	
		Focal length of the lens / power of lens	_	
	()	State the list of apparatus and materials	1	1
	(iii)	Convex lens with holder, light bulb with power supply, screen, metre rule	_	_
		Draw a functional arrangement of the apparatus		
	(iv)	Light bulb in holder connected to power supply// Cross-wire as the object in front	1	1
		of the bulb, convex lens in holder and screen - all align.		
		State how the manipulated variable is controlled	1	
		The convex lens is placed at distance of, $u = 15$ cm from the object		
		State how the responding variable is measured		
		The screen is adjusted until a sharp image is formed on it.	1	3
	(v)	The height of the image, <i>H</i> is measured.]]
		State how the procedure is repeated to obtain at least 5 sets of results		
		The procedure is repeated with values of $u = 20$ cm, 25 cm, 30 cm, 35 cm and 40	1	
		cm.		_
		State how the data is tabulated		
		$u / cm \mid H / cm$		
		15		
		20		
	(vi)	25	1	
		30		
		35		1
		40		1
		State how the data is analysed		
	(vii)	A graph of H against u is drawn	1	
	()			

_	No	Answer	Ma	rks
T	(a)	State a suitable inference		
		Current induced/produced depends on the speed//height//compression	1	1
	(b)	State a relevant hypothesis		
		The greater the height//compression, the greater the current induced	1	1
	(c) (i)	State the aim of experiment To investigate the relationship between the height//compression and the current induced	1	1
	(ii)	State the manipulated variable and the responding variable		
	(11)	Manipulated variable: the height//compression	1	
		Responding variable: magnitude of current induced, I		
		No penang		
		State ONE variable that kept constant	1	
		Fixed variable: strength of bar magnet // the number of turns/// Resistance/diameter of wire		
	(iii)	Complete list of apparatus and materials		
		Microammeter/galvanometer, retort stand, copper wire, connecting wire	1	
	(iv)	Arrangement of apparatus:	1	
		Height, h S Bar magnet N		
	(v)	State the method of controlling the manipulated variable 1. Set-up the apparatus as shown in figure above. 2. Start the experiment with h = 30.0 cm. Drop the solenoid into the magnet at height of h=30.0 cm.	1	
		State the method of measuring the responding variable		
		State the method of measuring the responding variable 3. Record the magnitude of induced current, I shown on the galvanometer.		
		3. Record the magnitude of induced current, I shown on the garvanometer.	1	
		D the annualment at least 4 times	•	
		Repeat the experiment at least 4 times 4. Repeat the steps by using h = 40.0 cm, 50.0 cm, 60.0 cm and 70.0 cm.	1	

No		Answer	Mar	rks
(vi)	Height,h (cm)	Induced current, I (μA)		
	30.0		1	1
	40.0			ĺ
	50.0			
	60.0			
	70.0			
			1	
	———			
	Height, h	(cm)	12	

PERATURAN PEMARKAHAN TAMAT